Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Environ Health Sci Eng ; 19(2): 1801-1806, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1392048

ABSTRACT

BACKGROUND AND PURPOSE: In late 2019, a novel infectious disease (COVID-19) was identified in Wuhan China, which turned into a global pandemic. Countries all over the world have implemented some sort of lockdown to slow down its infection and mitigate it. This study investigated the impact of the COVID-19 pandemic on air quality during 1st January to 30th April 2020 compared to the same period in 2016-2019 in ten Iranian cities and four major cities in the world. METHODS: In this study, the required data were collected from reliable sites. Then, using SPSS and Excel software, the data were analyzed in two intervals before and after the corona pandemic outbreak. The results are provided within tables and charts. RESULTS: The current study showed the COVID-19 lockdown positively affected Iran's air quality. During the COVID-19 pandemic, the four-month mean air quality index (AQI) values in Tehran, Wuhan, Paris, and Rome were 76, 125, 55, and 60, respectively, which are 8 %, 22 %, 21 %, and 2 % lower than those during the corresponding period (83, 160, 70, and 61) from 2016 to 2019. CONCLUSIONS: Although the outbreak of coronavirus has imposed devastating impacts on economy and health, it can have positive effects on air quality, according to the results.

2.
Atmos Environ (1994) ; 261: 118563, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1275149

ABSTRACT

The limited knowledge about the mechanism of SARS-CoV-2 transmission is a current challenge on a global scale. Among possible transmission routes, air transfer of the virus is thought to be prominent. To investigate this further, measurements were conducted at Razi hospital in Ahvaz, Iran, which was selected to treat COVID-19 severe cases in the Khuzestan province. Passive and active sampling methods were employed and compared with regard to their efficiency for collection of airborne SARS-COV-2 virus particles. Fifty one indoor air samples were collected in two areas, with distances of less than or equal to 1 m (patient room) and more than 3 m away (hallway and nurse station) from patient beds. A simulation method was used to obtain the virus load released by a regularly breathing or coughing individual including a range of microdroplet emissions. Using real-time reverse transcription polymerase chain reaction (RT-PCR), 11.76% (N = 6) of all indoor air samples (N = 51) collected in the COVID-19 ward tested positive for SARS-CoV-2 virus, including 4 cases in patient rooms and 2 cases in the hallway. Also, 5 of the 6 positive cases were confirmed using active sampling methods with only 1 based on passive sampling. The results support airborne transmission of SARS-CoV-2 bioaerosols in indoor air. Multivariate analysis showed that among 15 parameters studied, the highest correlations with PCR results were obtained for temperature, relative humidity, PM levels, and presence of an air cleaner.

SELECTION OF CITATIONS
SEARCH DETAIL